Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 6689, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509105

RESUMO

During evolution of Dinophyceae, size reduction of the episome has occurred in several lineages (including unarmoured Amphidiniales and armoured Prorocentrales). One such species is Amphidinium crassum, whose taxonomic identity is elusive though showing morphological similarities with Oxytoxaceae (currently placed in armoured Peridiniales). Plankton samples were taken at the type locality of A. crassum in Kiel Bight (Baltic Sea) in order to establish monoclonal strains. The protist material was examined in detail using light and electron microscopy, and a long (2984 bp) ribosomal RNA sequence gained was part of a taxon sample comprising 206 specimen vouchers and representing the known molecular diversity of Dinophyceae. Cells of A. crassum were ovoid and exhibited a plate pattern po, 4', 1a, 6'', 5c, 4s, 5''', 1''''. In the molecular phylogeny, the species seemed to belong neither to Amphidiniales nor to Peridiniales but to Prorocentrales and clustered with other representatives of Oxytoxaceae. The morphological diversity of Prorocentrales appears thus expanded, and the group may include a number of previously unrecognised representatives unusually having five postcingular and only a single antapical plate. The taxonomic identity of A. crassum is clarified by epitypification, and the species notably exhibits both an apical pore and an additional epithecal pore.


Assuntos
Dinoflagelados , Dinoflagelados/genética , RNA Ribossômico/genética , Filogenia
2.
Harmful Algae ; 127: 102471, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37544671

RESUMO

Shellfish contamination with azaspiracids (AZA) is a major and recurrent problem for the Irish shellfish industry. Amphidoma languida, a small thecate dinoflagellate of the family Amphidomataceae, is widely distributed in Irish coastal waters and is one of the identified source species of azaspiracids. Irish and North Sea strains of Am. languida have been found to produce as major metabolites AZA-38 and -39 whose structures have only been provisionally elucidated by mass spectrometry and their toxic potential is currently unknown. In order to provide pure AZA-38 and -39 for subsequent structural and toxicological analyses, we present the first successful large-scale culture of Am. languida. A 180 L in house prototype bioreactor was used for culture growth and harvesting in semi-continuous mode for two months. Two different runs of the photobiorector with different light and pH setting showed the highest toxin yield at higher light intensity and slightly higher pH. AZA-38 and -39 cell quota were measured throughout the complete growth cycle with AZA-39 cell quota increasing in proportion to AZA-38 at late stationary to senescence phase. Over two experiments a total of 700 L of culture was harvested yielding 0.45 mg of pure AZA-39. The structure of AZA-39 was elucidated through NMR data analyses, which led to a revision of the structure proposed previously by mass spectrometry. While the spirotetrahydrofuran/tetrahydrofuran of rings A and B has been confirmed by NMR for AZA-39, a methyl is still present in position C-14 and the carboxylic acid chain is different from the structure proposed initially.


Assuntos
Dinoflagelados , Dinoflagelados/química , Fotobiorreatores , Espectrometria de Massas , Frutos do Mar/análise
3.
Harmful Algae ; 127: 102475, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37544675

RESUMO

This study describes two novel species of marine dinophytes in the genus Alexandrium. Morphological characteristics and phylogenetic analyses support the placement of the new taxa, herein designated as Alexandrium limii sp. nov. and A. ogatae sp. nov. Alexandrium limii, a species closely related to A. taylorii, is distinguished by having a shorter 2'/4' suture length, narrower plates 1' and 6'', with larger length: width ratios, and by the position of the ventral pore (Vp). Alexandrium ogatae is distinguishable with its metasert plate 1' having almost parallel lateral margins, and by lacking a Vp. Production of paralytic shellfish toxins (PSTs), cycloimines, and goniodomins (GDs) in clonal cultures of A. ogatae, A. limii, and A. taylorii were examined analytically and the results showed that all strains contained GDs, with GDA as major variants (6-14 pg cell-1) for all strains except the Japanese strain of A. limii, which exclusively had a desmethyl variant of GDA (1.4-7.3 pg cell-1). None of the strains contained detectable levels of PSTs and cycloimines.


Assuntos
Dinoflagelados , Filogenia , Dinoflagelados/genética , Toxinas Marinhas/análise
4.
Microorganisms ; 11(7)2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37512902

RESUMO

Prorocentrum comprises a diverse group of bloom-forming dinophytes with a worldwide distribution. Although photosynthetic, mixoplanktonic phagotrophy has also been described. Recently, the small P. cf. balticum was shown to use a remarkable feeding strategy by crafting globular mucus traps to capture and immobilize potential prey. Here we present evidence showing that two additional related species, the recently described P. pervagatum and the cosmopolitan bloom-forming P. cordatum, also produce large (80-120 µm) mucus traps supporting their mixoplanktonic activity. Prey are captured within the traps either through passive entanglement upon contact with the outside surface, or through active water movement created by rotating Prorocentrum cells eddying particles to the inside surface where trapped live prey cells became immobilized. Entrapment in mucus assisted deployment into the prey of a peduncle extruded from the apical area of the Prorocentrum cell. Phagotrophy by P. pervagatum supported faster growth compared to unfed controls and time series quantification of food vacuoles revealed ingestion rates of ca. 10-12 Teleaulax prey cells day-1. Model calculations show clear advantages of deploying a mucus trap for increasing prey encounter rates. This study demonstrates that the large size and immobilization properties of mucus traps successfully increase the availability of prey for small Prorocentrum species, whose peduncle feeding mode impedes consumption of actively moving prey, and that this strategy is common among certain clades of small planktonic Prorocentrum species.

5.
Harmful Algae ; 124: 102388, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37164556

RESUMO

To date, the putative shellfish toxin azaspiracid 59 (AZA-59) produced by Azadinium poporum (Dinophyceae) has been the only AZA found in isolates from the Pacific Northwest coast of the USA (Northeast Pacific Ocean). Anecdotal reports of sporadic diarrhetic shellfish poisoning-like illness, with the absence of DSP toxin or Vibrio contamination, led to efforts to look for other potential toxins, such as AZAs, in water and shellfish from the region. A. poporum was found in Puget Sound and the outer coast of Washington State, USA, and a novel AZA (putative AZA-59) was detected in low quantities in SPATT resins and shellfish. Here, an A. poporum strain from Puget Sound was mass-cultured and AZA-59 was subsequently purified and structurally characterized. In vitro cytotoxicity of AZA-59 towards Jurkat T lymphocytes and acute intraperitoneal toxicity in mice in comparison to AZA-1 allowed the derivation of a provisional toxicity equivalency factor of 0.8 for AZA-59. Quantification of AZA-59 using ELISA and LC-MS/MS yielded reasonable quantitative results when AZA-1 was used as an external reference standard. This study assesses the toxic potency of AZA-59 and will inform guidelines for its potential monitoring in case of increasing toxin levels in edible shellfish.


Assuntos
Dinoflagelados , Intoxicação por Frutos do Mar , Animais , Camundongos , Cromatografia Líquida , Espectrometria de Massas em Tandem , Frutos do Mar/análise , Dinoflagelados/química , Washington
6.
Harmful Algae ; 124: 102404, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37164557

RESUMO

The dinophyte family Amphidomataceae includes the genera Azadinium and Amphidoma. Four of these species are known to produce azaspiracids, which are lipophilic phycotoxins accumulating in shellfish. The diversity and biogeography of Amphidomataceae is far from yet resolved. Here we performed a time series sampling of both water and sediments in the Taiwan Strait from Nov. 2018 to April 2021. Metabarcoding was performed to unveil the diversity of Amphidomataceae targeting internal transcribed spacer (ITS1) region and partial large subunit ribosomal DNA (LSU rDNA D1-D3), followed by quantitative PCR (qPCR) with modified primers for Az. poporum ribotypes. The diversity of Amphidomataceae was revealed from the water samples with the aid of ITS1 and LSU based molecular phylogeny. The LSU based approach detected only a few species. In contrast, ITS1 based dataset showed eight new Azadinium clades and several ZOTUs (zero-radius operational taxonomic units) grouping together with Am. languida. Moreover, eleven known Azadinium species including three ribotypes of Az. poporum and Az. dexteroporum, and two ribotypes of Az. spinosum, were detected. The latter two species have not been reported in China before. Among these toxigenic species, Az. poporum was relevantly abundant whereas others were rare. The maximum of 209 cells L -1 of Az. poporum ribotype A was estimated using qPCR nearby Quanzhou in Nov. 2018 and 172 cells L 1 of Az. poporum ribotype B was detected far off coast in Apr. 2021. Metabarcoding on sediment samples revealed Az. poporum ribotypes B and C, but strains obtained with sediment incubation experiments yielded only ribotype B. Using qPCR about 0.2 cysts g -1 of Az. poporum ribotype B were quantified in May 2019 but cysts of Az. poporum ribotype C were not detected. Our results suggest that metabarcoding targeting ITS1 region is powerful to uncover the diversity of harmful dinophytes. Our results also highlight the rich diversity of Amphidomataceae and risk potential of azaspiracids in the Taiwan Strait and surrounding waters.


Assuntos
Dinoflagelados , Estações do Ano , Taiwan , Dinoflagelados/genética , DNA Ribossômico/genética , Água
7.
Sci Rep ; 13(1): 8593, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37237053

RESUMO

Among the photosynthetically active dinophytes, the Kryptoperidiniaceae are unique in having a diatom as endosymbiont instead of the widely present peridinin chloroplast. Phylogenetically, it is unresolved at present how the endosymbionts are inherited, and the taxonomic identities of two iconic dinophyte names, Kryptoperidinium foliaceum and Kryptoperidinium triquetrum, are also unclear. Multiple strains were newly established from the type locality in the German Baltic Sea off Wismar and inspected using microscopy as well as molecular sequence diagnostics of both host and endosymbiont. All strains were bi-nucleate, shared the same plate formula (i.e., po, X, 4', 2a, 7'', 5c, 7s, 5''', 2'''') and exhibited a narrow and characteristically L-shaped precingular plate 7''. Within the molecular phylogeny of Bacillariaceae, endosymbionts were scattered over the tree in a highly polyphyletic pattern, even if they were gained from different strains of a single species, namely K. triquetrum. Notably, endosymbionts from the Baltic Sea show molecular sequences distinct from the Atlantic and the Mediterranean Sea, which is the first report of such a spatial fragmentation in a planktonic species of dinophytes. The two names K. foliaceum and K. triquetrum are taxonomically clarified by epitypification, with K. triquetrum having priority over its synonym K. foliaceum. Our study underlines the need of stable taxonomy for central questions in evolutionary biology.


Assuntos
Diatomáceas , Dinoflagelados , Diatomáceas/genética , Filogenia , Microscopia , Plâncton , Simbiose
8.
Toxicon ; 231: 107159, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37210046

RESUMO

Goniodomin A (GDA) is a polyketide macrolide produced by multiple species of the marine dinoflagellate genus Alexandrium. GDA is unusual in that it undergoes cleavage of the ester linkage under mild conditions to give mixtures of seco acids (GDA-sa). Ring-opening occurs even in pure water although the rate of cleavage accelerates with increasing pH. The seco acids exist as a dynamic mixture of structural and stereo isomers which is only partially separable by chromatography. Freshly prepared seco acids show only end absorption in the UV spectrum but a gradual bathochromic change occurs, which is consistent with formation of α,ß-unsaturated ketones. Use of NMR and crystallography is precluded for structure elucidation. Nevertheless, structural assignments can be made by mass spectrometric techniques. Retro-Diels-Alder fragmentation has been of value for independently characterizing the head and tail regions of the seco acids. The chemical transformations of GDA revealed in the current studies help clarify observations made on laboratory cultures and in the natural environment. GDA has been found to reside mainly within the algal cells while the seco acids are mainly external with the transformation of GDA to the seco acids occurring largely outside the cells. This relationship, plus the fact that GDA is short-lived in growth medium whereas GDA-sa is long-lived, suggests that the toxicological properties of GDA-sa in its natural environment are more important for the survival of the Alexandrium spp. than those of GDA. The structural similarity of GDA-sa to that of monensin is noted. Monensin has strong antimicrobial properties, attributed to its ability to transport sodium ions across cell membranes. We propose that toxic properties of GDA may primarily be due to the ability of GDA-sa to mediate metal ion transport across cell membranes of predator organisms.


Assuntos
Macrolídeos , Monensin , Espectrometria de Massas , Macrolídeos/química , Éteres/química
9.
Microorganisms ; 11(2)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36838236

RESUMO

Prorocentrum comprises dinophytes with several unique traits, including the presence of two large thecal plates and apical insertion of flagella. Species delimitation for many small and similar planktonic species is challenging, as SEM analyses and DNA sequence information of type material are rarely available. Based on a strain from the North Atlantic Prorocentrum spinulentum, sp. nov. is described here. Cells were small (9.0-12.8 µm long, 8.5-11.9 µm deep), oval to almost round in lateral view and moderately compressed. The ovoid nucleus was in median or slightly sub-median position on the cells ventral side. The plate surface appeared spiny in light microscopy with thecal pores visible in empty thecae. Electron microscopy revealed plates densely covered by relatively long spines and two size classes of thecal pores. The periflagellar area consisted of 8 platelets, and there was a prominent wing (ca. 1 µm wide and long) on platelet 1. The new species is distinct in DNA trees and embedded in the Prorocentrum shikokuense species group. It differs from the protologues of other small species of Prorocentrum by the unique combination of cell size and shape, the presence of long spines on the thecal plate surface and scattered thecal pores. The thorough morphological description of this species, representing a previously uncharacterised lineage within Prorocentrum, increases and improves our knowledge of the diversity within this important group of planktonic organisms.

10.
J Eukaryot Microbiol ; 70(4): e12972, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36847544

RESUMO

Protist plankton are major members of open-water marine food webs. Traditionally divided between phototrophic phytoplankton and phagotrophic zooplankton, recent research shows many actually combine phototrophy and phagotrophy in the one cell; these protists are the "mixoplankton." Under the mixoplankton paradigm, "phytoplankton" are incapable of phagotrophy (diatoms being exemplars), while "zooplankton" are incapable of phototrophy. This revision restructures marine food webs, from regional to global levels. Here, we present the first comprehensive database of marine mixoplankton, bringing together extant knowledge of the identity, allometry, physiology, and trophic interactivity of these organisms. This mixoplankton database (MDB) will aid researchers that confront difficulties in characterizing life traits of protist plankton, and it will benefit modelers needing to better appreciate ecology of these organisms with their complex functional and allometric predator-prey interactions. The MDB also identifies knowledge gaps, including the need to better understand, for different mixoplankton functional types, sources of nutrition (use of nitrate, prey types, and nutritional states), and to obtain vital rates (e.g. growth, photosynthesis, ingestion, factors affecting photo' vs. phago' -trophy). It is now possible to revisit and re-classify protistan "phytoplankton" and "zooplankton" in extant databases of plankton life forms so as to clarify their roles in marine ecosystems.


Assuntos
Ecossistema , Plâncton , Animais , Plâncton/fisiologia , Eucariotos/fisiologia , Fitoplâncton , Zooplâncton/fisiologia , Cadeia Alimentar , Oceanos e Mares
11.
Harmful Algae ; 120: 102338, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36470602

RESUMO

Thirty-four strains of Heterocapsa were established from Malaysian waters and their morphologies were examined by light, scanning, and transmission electron microscopy. Three species, H. bohaiensis, H. huensis, and H. rotundata, and three new species, H. borneoensis sp. nov., H. limii sp. nov., and H. iwatakii sp. nov. were described in this study. The three species were differentiated morphologically by unique characteristics of cell size, shape, displacement of the cingulum, shape and position of nucleus, the number and position of pyrenoids, and body scale ultrastructure. The species delimitations were robustly supported by the molecular data. A light-microscopy-based key to species of Heterocapsa is established, with two major groups, i.e., species with a single pyrenoid, and species with multiple pyrenoids. Bioassays were conducted by exposing Artemia nauplii to Heterocapsa densities of 1-5 × 105 cells mL-1, and treatments exposed to H. borneoensis showed naupliar mortality, while no naupliar death was observed in the treatments exposed to cells of H. bohaiensis, H. huensis, H. limii, and H. iwatakii. Naupliar death was observed during the initial 24 h for both tested H. borneoensis strains, and mortality rates increased up to 50% after 72-h exposure. This study documented for the first time the diversity and cytotoxic potency of Heterocapsa species from Malaysian waters.


Assuntos
Dinoflagelados , Dinoflagelados/classificação , Dinoflagelados/ultraestrutura , Malásia , Microscopia Eletrônica de Transmissão , Filogenia , Organismos Aquáticos/classificação , Organismos Aquáticos/ultraestrutura , Especificidade da Espécie , Microscopia Eletrônica de Varredura , Artemia/efeitos dos fármacos , Toxinas Marinhas/toxicidade
12.
Toxins (Basel) ; 14(10)2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36287954

RESUMO

Numerous potentially toxic plankton species commonly occur in the Black Sea, and phycotoxins have been reported. However, the taxonomy, phycotoxin profiles, and distribution of harmful microalgae in the basin are still understudied. An integrated microscopic (light microscopy) and molecular (18S rRNA gene metabarcoding and qPCR) approach complemented with toxin analysis was applied at 41 stations in the northwestern part of the Black Sea for better taxonomic coverage and toxin profiling in natural populations. The combined dataset included 20 potentially toxic species, some of which (Dinophysis acuminata, Dinophysis acuta, Gonyaulax spinifera, and Karlodinium veneficum) were detected in over 95% of the stations. In parallel, pectenotoxins (PTX-2 as a major toxin) were registered in all samples, and yessotoxins were present at most of the sampling points. PTX-1 and PTX-13, as well as some YTX variants, were recorded for the first time in the basin. A positive correlation was found between the cell abundance of Dinophysis acuta and pectenotoxins, and between Lingulodinium polyedra and Protoceratium reticulatum and yessotoxins. Toxic microalgae and toxin variant abundance and spatial distribution was associated with environmental parameters. Despite the low levels of the identified phycotoxins and their low oral toxicity, chronic toxic exposure could represent an ecosystem and human health hazard.


Assuntos
Dinoflagelados , Microalgas , Humanos , Toxinas Marinhas/toxicidade , Toxinas Marinhas/análise , Ecossistema , Mar Negro , Dinoflagelados/genética
13.
Toxins (Basel) ; 13(12)2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34941742

RESUMO

Various species of Alexandrium can produce a number of bioactive compounds, e.g., paralytic shellfish toxins (PSTs), spirolides, gymnodimines, goniodomins, and also uncharacterised bioactive extracellular compounds (BECs). The latter metabolites are released into the environment and affect a large range of organisms (from protists to fishes and mammalian cell lines). These compounds mediate allelochemical interactions, have anti-grazing and anti-parasitic activities, and have a potentially strong structuring role for the dynamic of Alexandrium blooms. In many studies evaluating the effects of Alexandrium on marine organisms, only the classical toxins were reported and the involvement of BECs was not considered. A lack of information on the presence/absence of BECs in experimental strains is likely the cause of contrasting results in the literature that render impossible a distinction between PSTs and BECs effects. We review the knowledge on Alexandrium BEC, (i.e., producing species, target cells, physiological effects, detection methods and molecular candidates). Overall, we highlight the need to identify the nature of Alexandrium BECs and urge further research on the chemical interactions according to their ecological importance in the planktonic chemical warfare and due to their potential collateral damage to a wide range of organisms.


Assuntos
Dinoflagelados/metabolismo , Toxinas Marinhas/metabolismo , Toxinas Marinhas/toxicidade , Animais , Toxinas Marinhas/química
14.
J Nat Prod ; 84(9): 2554-2567, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34520205

RESUMO

Goniodomin A (GDA, 1) is a phycotoxin produced by at least four species of Alexandrium dinoflagellates that are found globally in brackish estuaries and lagoons. It is a linear polyketide with six oxygen heterocyclic rings that is cyclized into a macrocyclic structure via lactone formation. Two of the oxygen heterocycles in 1 comprise a spiro-bis-pyran, whereas goniodomin B (GDB) contains a 2,7-dioxabicyclo[3.3.1]nonane ring system fused to a pyran. When H2O is present, 1 undergoes facile conversion to isomer GDB and to an α,ß-unsaturated ketone, goniodomin C (GDC, 7). GDB and GDC can be formed from GDA by cleavage of the spiro-bis-pyran ring system. GDA, but not GDB or GDC, forms a crown ether-type complex with K+. Equilibration of GDA with GDB and GDC is observed in the presence of H+ and of Na+, but the equilibrated mixtures revert to GDA upon addition of K+. Structural differences have been found between the K+ and Na+ complexes. The association of GDA with K+ is strong, while that with Na+ is weak. The K+ complex has a compact, well-defined structure, whereas Na+ complexes are an ill-defined mixture of species. Analyses of in vitro A. monilatum and A. hiranoi cultures indicate that only GDA is present in the cells; GDB and GDC appear to be postharvest transformation products.


Assuntos
Ácidos/química , Éteres/química , Macrolídeos/química , Metais Alcalinos/química , Catálise , Dinoflagelados/química , Simulação de Dinâmica Molecular , Estrutura Molecular
15.
Toxins (Basel) ; 13(8)2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34437415

RESUMO

Harmful effects caused by the exposure to paralytic shellfish toxins (PSTs) and bioactive extracellular compounds (BECs) on bivalves are frequently difficult to attribute to one or the other compound group. We evaluate and compare the distinct effects of PSTs extracted from Alexandrium catenella (Alex5) cells and extracellular lytic compounds (LCs) produced by A. tamarense (NX-57-08) on Mytilus edulis hemocytes. We used a 4 h dose-response in vitro approach and analyzed how these effects correlate with those observed in a previous in vivo feeding assay. Both bioactive compounds caused moderated cell death (10-15%), being dose-dependent for PST-exposed hemocytes. PSTs stimulated phagocytic activity at low doses, with a moderate incidence in lysosomal damage (30-50%) at all tested doses. LCs caused a dose-dependent impairment of phagocytic activity (up to 80%) and damage to lysosomal membranes (up to 90%). PSTs and LCs suppressed cellular ROS production and scavenged H2O2 in in vitro assays. Neither PSTs nor LCs affected the mitochondrial membrane potential in hemocytes. In vitro effects of PST extracts on M. edulis hemocytes were consistent with our previous study on in vivo exposure to PST-producing algae, while for LCs, in vivo and in vitro results were not as consistent.


Assuntos
Hemócitos/efeitos dos fármacos , Toxinas Marinhas/toxicidade , Mytilus edulis , Animais , Sobrevivência Celular/efeitos dos fármacos , Dinoflagelados , Hemócitos/metabolismo , Hemócitos/fisiologia , Lisossomos/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Fagocitose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Intoxicação por Frutos do Mar
16.
Sci Rep ; 11(1): 12824, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-34140573

RESUMO

Dinophyte evolution is essentially inferred from the pattern of thecal plates, and two different labelling systems are used for the important subgroups Gonyaulacales and Peridiniales. The partiform hypotheca of cladopyxidoid dinophytes fits into the morphological concepts of neither group, although they are assigned to the Gonyaulacales. Here, we describe the thecate dinophyte Fensomea setacea, gen. & sp. nov., which has a cladopyxidoid tabulation. The cells displayed a Kofoidean plate formula APC, 3', 4a, 7″, 7C, 6S, 6''', 2'''', and slender processes were randomly distributed over the echinate or baculate surface. In addition, we obtained rRNA sequences of F. setacea, gen. & sp. nov., but dinophytes that exhibit a partiform hypotheca did not show a close relationship to Gonyaulacales. Character evolution of thecate dinophytes may have progressed from the ancestral state of six postcingular plates, and two more or less symmetrically arranged antapical plates, towards patterns of only five postcingular plates (Peridiniales) or more asymmetrical configurations (Gonyaulacales). Based on our phylogenetic reconsiderations the contact between the posterior sulcal plate and the first postcingular plate, as well as the contact between an antapical plate and the distalmost postcingular plate, do not represent a rare, specialized gonyaulacoid plate configuration (i.e., the partiform hypotheca of cladopyxidoid dinophytes). Instead, these contacts correspond to the common and regular configuration of peridinioid (and other) dinophytes.


Assuntos
Dinoflagelados/citologia , Dinoflagelados/genética , Dinoflagelados/classificação , Dinoflagelados/ultraestrutura , Funções Verossimilhança , Filogenia
17.
Harmful Algae ; 104: 101956, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-34023073

RESUMO

Gonyaulacales include a considerable number of harmful algae and to understand their origin and rise, knowledge of the evolutionary relationships is necessary. Many scientific names of protists introduced prior to the availability of DNA analytics are ambiguous and impede communication about biological species and their traits in the microbial world. Strains of Lingulodinium polyedra were established from its type locality in the Kiel Fjord (Germany) to clarify its taxonomy. Moreover, the phylogeny of Gonyaulacales was inferred based on 329 rRNA sequence accessions compiled in a curated sequence data base, with as much as possible type material equivalents included. Gonyaulacales were monophyletic and segregated into seven lineages at high systematic level, of which †Lingulodiniaceae constituted the first branch of the Gonyaulacales. Their type species had a plate formula APC (Po, X, cp), 3', 3a, 6'' 6c, 6s, 6''', 2'''' and is taxonomically clarified by epitypification. Recommendations for this important taxonomic tool are provided, with a focus on microorganisms. Most gonyaulacalean taxa established at generic rank are monophyletic, with Alexandrium, Coolia and Gonyaulax as notable exceptions. From an evolutionary perspective, gonyaulacalean dinophytes with quinqueform hypotheca are monophyletic and derive from a paraphyletic group showing the sexiform configuration.


Assuntos
Dinoflagelados , Dinoflagelados/genética , Filogenia , RNA Ribossômico
18.
Microorganisms ; 9(1)2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33430155

RESUMO

Azaspiracids (AZA) are a group of lipophilic toxins, which are produced by a few species of the marine nanoplanktonic dinoflagellates Azadinium and Amphidoma (Amphidomataceae). A survey was conducted in 2018 to increase knowledge on the diversity and distribution of amphidomatacean species and their toxins in Irish and North Sea waters (North Atlantic). We here present a detailed morphological, phylogenetic, and toxinological characterization of 82 new strains representing the potential AZA producers Azadinium spinosum and Amphidoma languida. A total of ten new strains of Am. languida were obtained from the North Sea, and all conformed in terms of morphology and toxin profile (AZA-38 and-39) with previous records from the area. Within 72 strains assigned to Az. spinosum there were strains of two distinct ribotypes (A and B) which consistently differed in their toxin profile (dominated by AZA-1 and -2 in ribotype A, and by AZA-11 and -51 in ribotype B strains). Five strains conformed in morphology with Az. spinosum, but no AZA could be detected in these strains. Moreover, they revealed significant nucleotide differences compared to known Az. spinosum sequences and clustered apart from all other Az. spinosum strains within the phylogenetic tree, and therefore were provisionally designated as Az. cf. spinosum. These Az. cf. spinosum strains without detectable AZA were shown not to cause amplification in the species-specific qPCR assay developed to detect and quantify Az. spinosum. As shown here for the first time, AZA profiles differed between strains of Az. spinosum ribotype A in the presence/absence of AZA-1, AZA-2, and/or AZA-33, with the majority of strains having all three AZA congeners, and others having only AZA-1, AZA-1 and AZA-2, or AZA-1 and AZA-33. In contrast, no AZA profile variability was observed in ribotype B strains. Multiple AZA analyses of a period of up to 18 months showed that toxin profiles (including absence of AZA for Az. cf. spinosum strains) were consistent and stable over time. Total AZA cell quotas were highly variable both among and within strains, with quotas ranging from 0.1 to 63 fg AZA cell-1. Cell quota variability of single AZA compounds for Az. spinosum strains could be as high as 330-fold, but the underlying causes for the extraordinary large variability of AZA cell quota is poorly understood.

19.
Toxins (Basel) ; 12(12)2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-33261221

RESUMO

Gymnodimines and spirolides are cyclic imine phycotoxins and known antagonists of nicotinic acetylcholine receptors (nAChRs). We investigated the effect of gymnodimine A (GYM A) and 13-desmethyl spirolide C (SPX 1) from Alexandrium ostenfeldii on rat pheochromocytoma (PC12) cells by monitoring intracellular calcium levels ([Ca]i). Using whole cells, the presence of 0.5 µM of GYM A or SPX 1 induced an increase in [Ca]i mediated by acetylcholine receptors (AChRs) and inhibited further activation of AChRs by acetylcholine (ACh). To differentiate the effects of GYM A or SPX 1, the toxins were applied to cells with pharmacologically isolated nAChRs and muscarinic AChRs (mAChRs) as mediated by the addition of atropine and tubocurarine, respectively. GYM A and SPX 1 activated nAChRs and inhibited the further activation of nAChRs by ACh, indicating that both toxins mimicked the activity of ACh. Regarding mAChRs, a differential response was observed between the two toxins. Only GYM A activated mAChRs, resulting in elevated [Ca]i, but both toxins prevented a subsequent activation by ACh. The absence of the triketal ring system in GYM A may provide the basis for a selective activation of mAChRs. GYM A and SPX 1 induced no changes in [Ca]i when nAChRs and mAChRs were inhibited simultaneously, indicating that both toxins target AChRs.


Assuntos
Cálcio/metabolismo , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Iminas/farmacologia , Receptores Muscarínicos/metabolismo , Receptores Nicotínicos/metabolismo , Compostos de Espiro/farmacologia , Animais , Canais de Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Linhagem Celular , Dinoflagelados/metabolismo , Compostos Heterocíclicos de 4 ou mais Anéis/isolamento & purificação , Iminas/isolamento & purificação , Toxinas Marinhas/isolamento & purificação , Toxinas Marinhas/farmacologia , Antagonistas Muscarínicos , Agonistas Nicotínicos , Células PC12 , Ratos , Compostos de Espiro/isolamento & purificação
20.
Toxins (Basel) ; 12(11)2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-33138275

RESUMO

Only few naturally occurring cyclic imines have been fully structurally elucidated or synthesized to date. The configuration at the C-4 carbon plays a pivotal role in the neurotoxicity of many of these metabolites, for example, gymnodomines (GYMs) and spirolides (SPXs). However, the stereochemistry at this position is not accessible by nuclear Overhauser effect-nuclear magnetic resonance spectroscopy (NOE-NMR) due to unconstrained rotation of the single carbon bond between C-4 and C-5. Consequently, the relative configuration of GYMs and SPXs at C-4 and its role in protein binding remains elusive. Here, we determined the stereochemical configuration at carbon C-4 in the butenolide ring of spirolide- and gymnodimine-phycotoxins by comparison of measured 13C NMR shifts with values obtained in silico using force field, semiempirical and density functional theory methods. This comparison demonstrated that modeled data support S configuration at C-4 for all studied SPXs and GYMs, suggesting a biosynthetically conserved relative configuration at carbon C-4 among these toxins.


Assuntos
Compostos Heterocíclicos com 3 Anéis/química , Hidrocarbonetos Cíclicos/química , Iminas/química , Compostos de Espiro/química , 4-Butirolactona/análogos & derivados , 4-Butirolactona/química , Carbono/química , Simulação de Dinâmica Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...